Some new regularity results for the Navier-Stokes equations

发布时间:2024年01月08日 作者:刘桥   阅读次数:[]

报告题目:Some new regularity results for the Navier-Stokes equations

报告人: 周道国 教授(杭州师范大学)

报告时间:2024年1月10日上午9点30 分-11点30分

报告地点: 腾讯会议:291-619-566

报告摘要:Two regularity results are established for the Navier-Stokes equations. (1)We consider regularity criteria in endpoint space BMO^{-1} or B^{-1}_{\infty,\infty}. If two velocity components are small in BMO^{-1}, or one velocity component is small in B^{-1}_{\infty,\infty} with other two velocity components being bounded in B^{-1}_{\infty,\infty}.(2)It is shown that if the velocity satisfies that \|u\|_{L_t^p L_x^q}\leq C log^{1/p -}(T-t) with 2/p+3/q=1, then the solution will not blow up. This improves Serrin's criterion by admitting logarithmic type growth.

报告人简介::周道国,毕业于中科院数学与系统科学研究院应用数学研究所,现为杭州师范大学副教授。研究方向为流体力学中的的偏微分方程,特别是不可压缩Naiver-Stokes方程。主持了3项国家自然科学基金项目。已在“J. Differential Equations”、“Pacific J. Math.”、“J. Nonlinear Sci. ”、“J. Math. Fluid Mech.”、“J. Math. Sci. (N.Y.)”等期刊上发表数学论文多篇。曾在牛津大学做访问学者。



打印】【收藏】 【关闭