报告题目:Q-Curvature equation on S^1 and a Blaschke-Santalo Type Inequality
报告人:蒋美跃教授(北京大学)
时间:2020年11月27日(周五)下午16:00-18:00
地点:数学楼一楼145报告厅
摘要:In this talk we will fist show that all solutions of a class of Q-curvature equation on S^1 can be explicitely written out in an unity expression with parameters. Based on this, the Blaschke-Santalo type inequality will be discussed in H^2(S^1). We will show that the equality holds if and only if u is the solution of the Q-curvature equation of canstant times. If time permits, solutions of prescribed Q-curvature equation on S^1 will also be discussed.
报告人简介:蒋美跃教授,北京大学数学科学学院教授,博士生导师,主要研究方向为非线性分析。主要研究内容包括:哈密顿系统周期解存在性,辛几何中关于Lagrange子流形相交问题的Arnold 猜测,ROF泛函极小问题,1-Laplace 算子的特征值问题等,在Ann. Inst. H. Poincare Anal.、 Manuscript Math.、 Calc. Var. Partial Differential Equations、 J. Differential Equations、 Proc. Roy. Soc. Edinburgh Sect. A等国际知名学术期刊上发表了一系列具有很高学术价值和理论意义的研究成果。