报告题目:The Fisher-KPP equation with nonlocal diffusion and free boundary
报告时间:2020年8月26日上午09:00-10:30
报告地点:腾讯会议ID:656 894 449
报告人:杜一宏教授(澳大利亚新英格兰大学)
报告摘要:We consider the Fisher-KPP equation with free boundary and "nonlocal diffusion", which is a natural extension of the free boundary model studied in Du and Lin [SIAM J. Math. Anal., 2010] and elsewhere, where "local diffusion" was used to describe the dispersal of the species being modeled, with the free boundary representing the spreading front of the species. We show that this nonlocal problem has a unique solution defined for all time, and its long-time dynamical behavior is governed by a spreading-vanishing dichotomy. Moreover, we completely determine the spreading speed, and show that, unlike the corresponding local diffusion model, here accelerated spreading can happen. This talk is based on joint works with Cao JiaFeng (Lanzhou), Li Fang (Guangzhou), Li WanTong (Lanzhou), Ni WenJie(Armidale) and Zhou MaoLin (Tianjin).
报告人简介:杜一宏教授,1978-1988年在山东大学数学系攻读本科、硕士、博士学位, 1988年获得博士学位,并留山东大学工作;1990年赴英国Heriot-Watt大学访问,1991年至今在澳大利亚新英格兰大学工作,现为该校数学系教授。杜一宏教授是非线性泛函分析、偏微分方程及其应用等领域的国际知名专家。多次赴中国、美国、英国、德国、法国、西班牙,日本,加拿大等国家和地区的高校或科研机构访问。在Arch. Rational Mech. Anal., SIAM J. Math. Anal., J. Funct. Anal., J. European Math. Soc., Trans. Amer. Math. Soc., J. Differ. Equations, Calc. Var. Partial Differ. Equ., J. Math. Pures Appl. 等国际知名期刊上发表论文120余篇(他引1700余次),并出版专著2部。自2003年持续获得澳大利亚国家自然科学基金的资助,自2013年任澳大利亚国家自然科学基金委评审专家。目前,担任多个国际期刊杂志的编委及20余个国际期刊杂志的特约审稿人。