林治武学术报告

发布时间:2020年07月03日 作者:陈和柏   阅读次数:[]

报告题目:Turning point principle for the stability of stellar models

报 告 人:林治武(美国理工学院)

报告时间:202077日星期二上午10:00-11:30

报告地点:腾讯会议ID:561239215

报告摘要:I will discuss some recent results (with Chongchun Zeng) on stability criterion for non-rotating gaseous stars modeled by the Euler-Poisson system. Under general assumptions on the equation of states, we proved a turning point principle that the stability of the stars is entirely determined by the mass-radius curve parametrized by the center density. In particular, the stability can only changed at points with an extremal mass. We use a combination of first order and 2nd order Hamiltonian formulations to get the stability criterion and the semi-group estimates for the linearized equation. If time permits, I will briefly describe the extension of this approach to study stability of rotating stars, and relativistic stars and star clusters.

个人简历:林治武教授,1995本科毕业于北京大学、1999年毕业于日本京大学,在2003年美国布朗大学取得博士学位,并在著名的用数学研究中心美国纽约大学柯朗用数学研究所做博士后研究,任美国理工学院(Georgia Institute of Technology)数学系身教授。主要研究: 数学物理与偏微分方程、流体力学定性及不定性理,在《Invent. Math.》、《Comm. Pure Appl. Math.》、《Memoirs of The American Mathematical Society》《Comm. Math. Phys.》和《Arch. Ration. Mech. Anal.》等权威期刊上表30余篇学术



打印】【收藏】 【关闭