The product of generalized Cauchy singular integral operators

发布时间:2024年03月26日 作者:马攀   阅读次数:[]

报告题目:The product of generalized Cauchy singular integral operators

报告人: 桑元琦(西南财经大学)

报告时间:2024年3月29日(周五)下午16:30-17:30

报告地点:数理楼235教室

报告摘要:For bounded measurable functions f,g,u and v on the unit circle, the expression P_{+}fP_{+}+P_{-}gP_{+}+P_{+}u P_{-}+P_{-}v P_{-} is referred to as a generalized Cauchy singular integral operator on L^{2}, where P_{+} is the Riesz projection, P_{-}=I_{L^{2}}-P_{+}. We apply a conclusion of the numerical matrix to a class of operator matrices and obtain a necessary and sufficient condition for the product of two generalized Cauchy singular integral operators to be a generalized Cauchy singular integral operator. As an application, we offer new proofs for various types of operator product problems, including dual truncated Toeplitz operators, singular integral operators, etc.

简介:桑元琦,西南财经大学讲师,主要研究模型空间相关的算子理论问题,研究成果发表在Results Math.,Banach J. Math. Anal.,J. Math. Anal. Appl.,等期刊。主持完成中国博士后基金1项,主持国家自然科学基金青年基金1项。



打印】【收藏】 【关闭