Limit theorems for functionals of long memory linear processes with infinite variance

发布时间:2023年12月12日 作者:温哲鑫   阅读次数:[]

 

报告题目:Limit theorems for functionals of long memory linear processes with infinite variance

报告人: 徐方军 教授 (华东师范大学)

报告时间:2023年12月14日(周四)上午 09:00 - 10:00

报告地点:线上腾讯会议(ID:452-238-070)

报告摘要: Let $X=\{X_n: n\in\mathbb{N}\}$ be a long memory linear process in which the coefficients are regularly varying and innovations are independent and identically distributed and belong to the domain of attraction of an $\alpha$-stable law with $\alpha\in (0, 2)$. Then, for any integrable and square integrable function $K$ on $\mathbb{R}$, under certain mild conditions, we establish the asymptotic behavior of the partial sum process $${\sum\limits_{n=1}^{[Nt]}[K(X_n)-E K(X_n)]: t\geq 0}$$ as $N$ tends to infinity, where $[Nt]$ is the integer part of $Nt$ for $t\geq 0$. An application to the kernel entropy estimation of the long memory linear process will be given.

简介:徐方军,华东师范大学统计学院教授,博士生导师。于2010年在美国康涅狄格大学获得博士学位,毕业后去美国堪萨斯大学做Robert Adams Visiting Assistant Professor, 于2013年7月进入华东师范大学工作。主要研究方向包括概率极限理论、随机分析及其应用,主持多项国自然项目,相关工作发表在Ann. Probab.、SPA、Bernoulli、Potential Anal等概率论与随机分析领域主流杂志。



打印】【收藏】 【关闭