报告题目:Progress On Macmahon's partition analysis
报告人:辛国策教授(首都师范大学)
报告时间:2023年11月28日(周二)上午10:30--12:30
线上会议:腾讯会议:441 783 391 密码:706522
报告摘要:Constant term or residue evaluation is fundamental in Mathematics. Many problems in combinatorics, geometry, representation theory, especially problems related to linear Diophantine equations, can be converted using Macmahon's partition analysis to a constant term of an Elliott-rational function, where an Elliott rational function has denominator as a product of binomials. This type of problem can be solved theoretically, but is hard in practice. We will introduce the field of iterated Laurent series as a framework, and elementary algorithm using partial fraction decompositions. We talk about development in this area and applications to Integer Linear programming.
报告人简介:辛国策,首都师范大学数学科学学院,教授,博士生导师。主要从事计数组合学和代数组合学方向的研究,已在《J. Combin. Theory Ser. A》、《Int. Math. Res. Not. IMRN》、《Adv. in Appl. Math.》、《J. Symbolic Comput.》等国际学术期刊发表文章50余篇,涉及线性丢番图方程,格路计数,Hankel行列式计算等。发展了以迭代Laurent级数域为基础的部分分式法,该方法在常数项计算,分拆理论,对称函数论等方向有广泛的应用,得到了国内外同行的高度评价。特别是美国数学会Steele重大贡献奖和ICA’s Euler奖获得者Doron Zeilberger评价其算法为“卓越的”。此外,在代数组合领域做出了一系列有影响的工作。尤其是在Shuffle猜想方面的一篇文章中,创造性地将代数几何中的有理型Shuffle猜想引入代数组合中,并推广到非互素的情形。这是递归证明有理型Shuffle猜想的基础,它推进了Shuffle猜想的研究,得到了国内外同行广泛的关注。