Physics consistent numerical methods for flows in porous media with noise

发布时间:2022年11月18日 作者:王小捷   阅读次数:[]

报告题目:Physics consistent numerical methods for flows in porous media with noise

报告人:黄灿 厦门大学

报告时间:2022年11月18日 10:00-12:40

报告地点:腾讯会议 625 432 382

报告摘要: In this talk, I will present a fully discrete scheme for the stochastic Stokes-Darcy equations with multiplicative noise. Implicit Euler scheme is used for the time discretization, and interior penalty discontinuous Galerkin (IPDG) scheme based on the BDM1-P0 finite element space is used for the space discretization. Physical interface conditions are imposed to couple the fluid equations in free fluid and porous media regions. It is proved that the implicit Euler scheme for the stochastic Stokes-Darcy equations is unconditionally stable. Under usual assumptions for the multiplicative noise and regularity of the velocity, we present the optimal convergence analysis in both time and space discretizations.

黄灿,厦门大学数学科学学院教授,2011年于美国Wayne State University获得博士学位,2011-2013年于美国Michigan State University从事博士后工作,博士后出站后受聘于厦门大学数学科学学院。黄灿的研究方向为微分方程数值解、随机偏微分方程数值解,创新成果发表在SIAM. J. Numer. Anal., IMA. J. Numer. Anal., J. Comp. Phys., J. Sci. Comput. Adv. Comput. Math.等多个国际计算数学权威期刊上。欢迎广大师生踊跃参加



打印】【收藏】 【关闭